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¢ as functions of time in order that the torques can be used
in the attitude control equations. This problem will be
solved for a circular orbit. Consider two sets of Cartesian
coordinates, one (z,y,2) fixed in the earth, and one (z,0,20)
fixed with respect to the orbital plane. Without loss of
generality, it can be assumed that the orbital plane contains
the 2, axis. In the (24,%0,2) system of coordinates,

2 = 7 c0Sd coswt )
Zo = 7 sinent (8)
Yo = T Sind coswyt (9)

where ¢ is the angle that the orbital plane makes with the 2z
axis and w; is the frequency of the satellite orbit. Trans-
forming to the z,y,2 coordinates by means of

T = Ty cOswat + Yo sinwet (10)
Yy = —xo sinwst + Yo coswst 1
where w; is the frequency of the earth’s rotation, one obtains

6 = cos~(z/r)
= cos " !{cosd cosw, {] (12)
¢ = tan~'(y/x)
s —.sinwlt sinewst < §in6 coswit faosw2t:| (13)
sinont coswet -+ $ind cosw;t sinwst

The angle between the roll axis and the meridians of longitude
is given by

v = tan~'(tand cscwt) (14)

Equations (1-3 and 12-14), when substituted into Eqs. (4~
6), will give the electromagnetic torques operating on the
satellite as explicit functions of time. For a polar (6 = 0)
orbit, Egs. (12-14) reduce to § = wif, ¢ = —wsf, and v = 0.

Present designs of satellites bearing Snap reactor power
systems call for a cylindrical configuration having approxi-
mately equal moments of inertia about pitch and roll axes,
and a much smaller moment about the yaw axis. In this
case, it is necessary to stabilize the satellite about the yaw
axis with some arrangement of gyroscopes, and it is therefore
desirable to minimize the magnetic torques about the yaw
axis.

Since the azimuthal component of the geomagnetic field
Be is generally small when compared with By or B,, Eq. (6)
shows that Ty can be minimized by locating the satellite in a
polar orbit (y = 0) and by aligning the satellite magnetic
moment along the yaw axis. If this latter requirement can-
not be accomplished, in no case should the satellite moments
be aligned with the pitch axis.
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In the large-scale shock sensitivity test, it is
assumed that the pressure amplitude at the 509
point is an intrinsic property of a propellant tested
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under standardized conditions, provided that the
shape of the pressure pulse is defined by the ampli-
tude. In order to examine this proviso and to
study the adequacy of pressure amplitude as a
measure of shock sensitivity, a second calibration
for the gap test was made with a pentolite donor re-
placing the tetryl donor of the standardized test.

HE large-scale shock sensitivity test (gap test) was

calibrated originally at this laboratory with a tetryl
donor® 2 to interpret the 509, point gap in terms of absolute
pressure. The pressure amplitude at the 509, point, as-
suming the shape of the pressure pulse to be defined by the
amplitude, should be an intrinsic property of a propellant
tested under standardized conditions and should be repro-
ducible regardless of the donor used. To study the ade-
quacy of 509, pressure as measure of shock sensitivity, a
standard pentolite donor was made and used in a second
calibration. This donor also was used to determine the
509, point of various substances; the pressures obtained at
the 509, point were compared to those obtained with the
standard tetryl donor.

Experimental Method

The ingredients of pentolite, 509, trinitrotoluene (TNT)
and 509, pentaerythrite tetranitrate (PETN), were pre-
pared according to the joint Army-Navy specification.® 4
In addition, careful control of the particle size, mixing process,
and density of the pellets was exercised. A no. 70 and a no.
100 sieve (U. S. Standard Sieve Series—ASTM specification)
were used to obtain particle sizes of the PETN and TNT
ranging from 150 to 210 . One thousand grams of each in-

" gredient were then added to a V-blender and dry blended

for 1 hr to insure a homogeneous mixture. The pentolite
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Fig.1 Shock in Plexiglas
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Table 1 Distance vs time in Plexiglas rod

Experiment 1 Experiment 2

Experiment 3 Experiment 4

Time, Distance, Time, Distance, Time, Distance, Time, Distance,
usec mm usec mm usee mm usec mm
1.21 7.2 1.87 10.4 1.31 8.0 1.18 7.2
3.83 20.0 3.76 18.9 2.89 16.0 2.01 11.5
5.69 28.0 5.82 28.1 5.85 28.9 4.08 21.2
7.71 35.7 7.70 35.3 7.75 35.9 7.64 36.0
10.26 44 .5 10.36 45.0 10.19 44.3 10.19 45.5
12.68 52.4 12.84 53.6 13.14 53.1 13.88 58.0
156.73 62.0 16.07 64.2 17.69 68.5 18.07 71.3
23.40 85.7 20.74 79.0 19.99 75.5 21.63 82.8
25.53 92.2 23.84 89.0 22.23 82.3 24.53 92.0
27.43 97.7 26 .96 98.6 25.78 93.6 27.34 100.5
28 .87 102.2 28.86 102.8

thus formed was placed into a mold of 2-in. i.d. and hy-
draulically pressed to a length of 1 = 0.003 in. and to a
density between 1.56 and 1.57 g/em3, 91 to 929, of the
maximum theoretical density (TMD), 1.71 g/cm3.

The experimental procedure for shock wave velocity meas-
urement was essentially that of the previous work! and
duplicates the conditions of the shock sensitivity test.?
Distance-time data for the four experiments run are given
in Table 1 and plotted in Fig. 1.

Velocity determinations for the first 10 to ‘15 mm of the
gap were difficult to make graphically. A slight variation
in the interpretation of the data in this region generates a
rather large variation in the calculated pressure. The error
may be increased further by inaccurate slope measurements
or by errors inherent in the equation of state used to calculate
shock pressure.

To obtain the best interpretation, a number of equations
ranging from a second- to a seventh-degree polynomial were
fitted to the experimental data by .an electronic computer
(IBM-7090). A fifth-degree equation reproduced the ex-
perimental data to a fair degree of accuracy. The first
derivatives of the equation :

X = 0377 4 5.903t — 0.250¢2 + 0.0213 —
0.207 X 10-34 4 0.281 X 10-5¢
where

X = distance, mm
t = time, psec

were used to obtain the shock velocities.

Table 2 lists the data for pressure and shock velocity vs
distance. The plot of shock pressure vs distance for pentolite
and tetryl!is shown in Fig. 2.

Discussion

The gap used in the Naval Ordnance Laboratory shock

sensitivity test is composed of Plexiglas, Lucite, cellulose
acetate, or some combination of these materials. These
substances are quite similar, and it has been demonstrated!
that they are equivalent as attenuators in the gap test.
Figure 2 shows the relationship between pressure and dis-
tance (gap) for both pentolite and tetryl. Both donors were
calibrated under similar conditions with one exception: the
Plexiglas rod used here was slightly smaller, 1% in. between
the flat parallel surfaces as against 2 in. in the earlier work
with tetryl. This should not affect the results obtained to
any noticeable degree. The same equation of state for the
attenuator was used in both calibrations to calculate the
pressure-distance relationship for the gap.

Similar work using cast pentolite 1.5 in. in diameter by
0.8-in. long has been done by Cook and Udy.5 Their pres-
sure vs distance curve shows values of pressure consistently

lower than those reported here but exhibiting the same
general shape. Quantitative differences are to be expected,
since Cook and Udy used cast rather than pressed pentolite
in geometries different from the present work. Analogous
differences appear in their calibration with tetryl for which
the geometry differed from that for the pentolite as well as
from that of the present work.

From Fig. 2 one sees that at zero gap the shock pressure of
the pentolite donor is somewhat larger than that of the
tetryl. This larger pressure is attenuated rapidly. After
10 mm it is within the tetryl pressure range, and after 25
mm (1 in.) of travel its curve approximates that of the tetryl.
From this point on, both donors may be considered to give
the same pressure amplitude within the precision of the ex-
perimental data.

The pressure amplitude at the 509, point as a quantitative
measure of sensitivity then was studied by making a series
of shock sensitivity tests on several different materials. A
number of charges were made from the same batch of mate-
rials, and the 509, point gap was determined using first a
tetryl donor and then a pentolite donor. The results are
listed in Table 3.

For gaps larger than 50 cards (13 mm), the pressure ampli-
tude for the same substance measured by the tetryl system
and the pentolite system differ by +£59, from the mean.
The values for gaps less than 50 cards differ by +13 to 209,
with increasing difference for decreasing gap length (see
Table 3).

It can be concluded that the same initiating pressure (to
within 59;) is measured by either donor at large gaps. For

Table 2 Pressure and shock velocity as a function of

distance
Distance, Shock velocity, Pressure,
mm mm/usec kbar
2 5.82 146.1
5 5.52 125.9
7 5.33 114.1
10 5.08 99.1
12 4.92 89.5
14 4.76 80.9
16 4.63 73.6
20 4.38 61.3
24 4.16 51.2
28 3.98 43.0
32 3.82 36.7
40 3.57 27.5
48 3.37 20.6
60 3.18 14.6
70 3.06 11.0
80 2.97 8.9
90 2.90 7.3
100 2.84 5.7
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Fig. 2 Pressure vs gap

Table 3 Pentolite,vs tetryl: shock sensitivity

Gap,
509,  Pressure, Mean,
Material Donor point kbar kbar
comp. B-3 (cast) tetryl 209 16.4
pentolite 209 18.0 17.2
nitroguanidine tetryl 46 63.0
= 1.59 g/cm3 pentolite 53 83.2 73.1
nitroguanidine/wax  tetryl 16 78.8
95/5 pentolite 25 119.7 99.3
= 1.55 g/em?

smaller gaps, agreement between the donors is not obtained
because the calibration curves in this region are inaccurate,
or because the pressure-time loading curves (not measured)
affect the result, or because both of these factors are opera-
tive. As one approaches zero gap the pressure-time histories
of the two donors should differ, and this factor probably has
a major effect on inducing detonation of the acceptor. In
other words, at the highest pressures, pressure amplitude
alone does not define the shock sufficiently.
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Calculation of Damped Linear Systems

by Holzer’s Method
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OLZER’s tabular method for the calculation of torsional

and other discrete linear systems is very well known.
When treating the free vibrations by this method, i.e., when
evaluating the natural frequencies, it generally is stated in
the literature that the parameter of the Holzer table is the
frequency w.

The fact is, however, that in the case of free vibrations the
parameter of the Holzer table is the eigenvalue A rather than
the frequency w.

To substantiate this statement, consider first the standard
single-degree-of-freedom system that is damped both ex-
ternally and internally. In this system, (—s¢) = external
damping torque (damping on the mass), and (—u¢) = in-
ternal damping torque (damping parallel to the spring).

The differential equation is

~Jo—sp—up — ke =20 (1)

Substitution of the solution assumption ¢ = ®e! in Eq.
(1) gives the eigenvalue Ay ,; in the form

Aip = ~[(s + w/2J] = j{w? — [(s + wy/2J]2} 2
j= (=D (2

hence in the form A, s = —h = jwp. (wp = damped natural
frequency; w, = undamped natural frequency.)

Generalizing this for the » mass system, one can say that,
in the case of the solution assumption ¢ = Pet!, the eigen-
values of a linear system are of the form ,A;2 = —(ah) =
j(mwp). (Subscript m refers to the mth mode.)

Now, consider a multimass system damped both externally
and internally. If the system is undamped (s: = u: = 0),
the differential equation for the first mass reads

'—J1<;'51 - /61(901 - Soz) =0 (3)

For the undamped system the “one-phase” solution assump-
tion ¢:= ®; sinwt is acceptable because there is no phase
shift between the masses. Substituting it in Eq. (3), one has

b, = & — (lez/kl)q)l (4)

which, as is well known, is the relation upon which the ordi-
nary Holzer table for the undamped system is based. 4

If the multimass system considered is damped, then the
differential equation for the first mass reads

—J1g1 — a1 — w1 — @) — k(o — ) =0 (5

Now a “two-phase” solution, hence either ¢; = P or ¢; =
e/ must be accepted because the damping produces a phase
shift.

Upon substituting the solution assumption ¢; = P:ed? in
Eq. (5), one obtains

& = & — [(—1A% — siA)/(k + wA) 1P (6)
Comparing Eqgs. (4) and (6), one sees that Jiw? and k; with
the undamped system correspond to —JA? — s;A and ki +
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